

 Bilkent University

Department of Computer Engineering

Senior Design Project

Project Short-name: So FarM So Good

Analysis Report

Giray Baha Kezer, Fazilet Simge Er, Melih Ünsal, Kaan Atakan Öztürk

Supervisor: Prof. Dr. Halil Altay Güvenir

Jury Members: Prof. Dr. Özcan Öztürk, Prof. Dr. Uğur Güdükbay

Innovation Expert: Kerem Erikçi

November 11, 2019

This report is submitted to the Department of Computer Engineering of Bilkent University in partial

fulfillment of the requirements of the Senior Design Project course CS491.

TABLE OF CONTENTS

1 Introduction 4

2 Current System 4

3 Proposed System 5
3.1 Overview 5
3.2 Functional Requirements 6

3.2.1 User Functionality Requirements 6
3.2.2 System Functionality Requirements 7

3.3 Non-functional Requirements 7
3.3.1 Usability 7
3.3.2 Security 7
3.3.3 Scalability 7
3.3.4 Robustness 8
3.3.5 Extensibility 8

3.4 Pseudo Requirements 8
3.5 System Models 8

3.5.1 Scenarios 8
Use Case #1 8
Use Case #2 9
Use Case #3 9
Use Case #4 10
Use Case #5 11
Use Case #6 11
Use Case #7 11
Use Case #8 12
Use Case #9 12
3.5.2 Use-Case Model 12
3.5.3 Object and Class Model 13

3.5.3.1 Class Diagram 13
3.5.3.1.1 Class: Actor 14
3.5.3.1.2 Class: Producer 14
3.5.3.1.3 Class: Company 14
3.5.3.1.4 Class: Cooperative 15
3.5.3.1.5 Class: Product 15
3.5.3.1.6 Class: Asset 15
3.5.3.1.7 Class: Transaction 16
3.5.3.1.8 Class: TransactionPool 16
3.5.3.1.9 Class: Block 16
3.5.3.1.10 Class: Blockchain 17
3.5.3.1.11 Class: P2pServer 17

3.5.3.2 Object Model 18
3.5.4 Dynamic Models 18

3.5.4.1 Activity Diagrams 19
3.5.4.2 State Diagrams 20

3.5.4.2.1 Change Password 20
3.5.4.2.2 Add Product 20

3.5.4.3 Sequence Diagrams 21
3.5.4.3.1 Buy Product 21

3.5.5 User Interface - Navigational Paths and Screen Mock-ups 22
3.5.5.1 Home Page 22
3.5.5.2 Sign Up Page 23
3.5.5.3 Login Page 23
3.5.5.4 Producer Main Page 24
3.5.5.5 Add Product Page 25
3.5.5.6 Company Main Page 25
3.5.5.7 Profile Page 26

4 Other Analysis Elements 26
4.1 Consideration of Various Factors 27
4.2 Risks and Alternatives 27
4.3 Project Plan 28

4.3.1 Project Management Tools 39
4.4 Ensuring Proper Team-Work 41
4.5 Ethics and Professional Responsibilities 41
4.6 New Knowledge and Learning Strategies 41

5 Glossary 42

6 References 43

1 Introduction
In Turkey, farmers, especially the small ones, have so many problems and

this situation causes our production in agriculture to decrease day by day. However,
we cannot put ourselves at risk for agriculture because agriculture constitutes around
13% of the country's exports. We also see that agricultural areas and the number of
farmers has decreased for the last 5 years. So the problems of agriculture should be
resolved one by one and we plan to solve some problems of agriculture by So FarM
So Good. This web based platform is going to combine small farmers so that they
will be able to sell their goods to the appropriate companies by the virtual
cooperative we are going to establish. Normally, companies like Konya Şeker
Sanayi and Ticaret A.Ş or Çaykur have some limitations when they are aiming to buy
goods from farmers and the farmers who are not able to produce under the threshold
that the companies put, sell their crops to the local landowners for less that worth. By
our virtual cooperative, they are able to combine their crops and the cooperative is
going to sell the crops and pay to the farmers proportional to the amount of products
the farmers put into. So FarM So Good is also servicing more secure payment
system which uses the new trend: Blockchain

Computer Science world has a new trendy word ‘blockchain’. We met this
idea in the early twentieth century. By blockchain, both side of a trade, don’t need
any mediator to prove that this trade has occurred. Nowadays, we use banks as a
mediator in the trades. However, blockchain convert the trades as a decentralized
form so that everyone is able to see all the trades real time and this makes the
trades more secure ever than before. In this project, we use blockchain in the trades
between the virtual cooperatives and the farmers and also between the farmers in
cooperatives and the government. By resolving these 2 problems,, we aim to solve
the problems of injustice farmers due to the small amount of the product they
produce and thus to make them happy and add value to the agricultural economy of
the country by increasing their contribution to total production by making them
happy.

2 Current System
2.1 Agrivi

Agrivi is a data-driven farm management software which helps people manage every activity

on their farm. It gives the people the opportunity to plan, monitor and analyze their farms

from planting to harvesting with only a few clicks. Agrivi’s core features are farm

management, powerful analytics, advanced pest detection algorithms and best practice

knowledge .

2.2 WeFarm4

Wefarm4 is a cooperation among farmers with the sub-branches of WeFarm4future,

WeFarm4planet, WeFarm4Community and WeFarm4Growth. They’re aiming to work

together, create long-term benefits and empower farmers through cooperatives [3].

Above mentioned applications are established to support to the farmers. However, our
projects different than the current ones. Establishing the online cooperatives between
farmers is a significant feature that does not exist those. Moreover, we also intend to solve
quota problem for the sugar beet farmers which is also new for the current system. On the
other hand, our software will be web application. However, entire above mentioned
softwares have mobile applications. The project also aims to contribute economy of the
Turkey by controlling sugar beet distribution and holding the data in Blockchain system.

3 Proposed System

3.1 Overview

Our Senior Design Project has an innovative engineer solution for the
problems listed in the introduction part. In this project, we are planning to resolve 2
problems of the sugar farmers especially who produce less and cannot pass the
threshold that the companies like Anadolu Efes, Çaykur, Konya Şeker Sanayi ve
Ticaret A.Ş put by themselves. In this platform called So FarM So Good, the sugar
farmers will be able to establish their virtual cooperation so that they will be able to
unite for large companies to see themselves as business partners other than
worthless individuals. For example, a farmer with 30 acres of land may not be
noticed by the big companies, but if 5 farmers with 30 acres of land put together their
fields, they will make the companies’ mouth water.

We also offer a blockchain technology for the paymounts between officials
and the farmers in the platform to make the paymounts as secure as possible. To
give an instance, a farmer needs 100k Turkish Liras to make harvest, officials give
him 100k valued coins instead via blockchain system. These 100k coins can be
useable into officials related departments and supplier chains, it means the farmer
could only use that valued coins into related expenses and take whatever he needs.
Then process will not stop and will be continuous and there is going to be a win-win
system belongs farmer, officials. At the end, small farmers will be able to guarantee

to sell their crops for their values to the government and there will be no security
issue during the payments.

3.2 Functional Requirements

3.2.1 User Functionality Requirements

● The companies, willing to see where the sugar beet fields, should see their

locations on the map. It will be serviced by an optimized sugar beet detection model.

● Farmers could have the ability to create cooperation in the website.

● Companies interested in the specific product should have the ability to notify the

cooperation consisting of farmers.

● The fields related to the specific product should be shown on the map as a point

whose size is proportional to the area of the field.

● The platform should recommend appropriate farmers to the farmers who are

searching for a friend to form cooperation.

● The platform should recommend cooperatives to the companies related to their

needs in terms of property.

● The platform should recommend farmers to property based sell options to directly

companies if they have adequate harvest in terms of different quotas.

● The cooperatives give the rate-based material to the farmers, which can be

converted into money after the product sale via taking in proportion as they gave to

the companies.

● The farmers takes rate-based material before the harvest sale and then after the

harvest sale to companies from cooperatives or farmers himself company pays. After

that payment if two actors, cooperative and company, confirm that phase the

transaction inserted into our platform.

3.2.2 System Functionality Requirements

● The platform needs to be a mobile compatible web-based platform.

● There needs to be two different user type, cooperative and farmer.

● Each user needs an account to use the platform.

● Cooperative names must be unique.

● User emails and passwords must be unique.

● A database needs to be set up for the data which will be stored in each profile.

3.3 Non-functional Requirements

3.3.1 Usability

● The platform should have ease of use for our main customers, farmers, which are

the most important part of agriculture. Farmers demand more ease of use for this

technological move. Thus, they should be able to use the platform easily and

willingly.

● Features of the platform and user interface should be easily understandable.

3.3.2 Security

● The platform should ensure the security of data of users and private information

about companies by blockchain system.

3.3.3 Scalability

● The platform should be scalable enough to handle the huge number of users and

data processing work.

3.3.4 Robustness

● The platform should be robust. Whatever the size of the coming data, the platform

should handle it.

3.3.5 Extensibility

● The platform should support easy integrations for possible future features.

3.4 Pseudo Requirements

● The platform will be a web application written in Angular 4-5.

● The platform will be developed using Docker to standardize operations and

seamlessly move the platform.

● A database will be set up to store data.

3.5 System Models

3.5.1 Scenarios

Use Case #1

Unique Name: Sign Up

Participating actor/s: Producer/Company

Entry condition: Producer/Company signs up to the system by clicking “Sign Up”

button on the main page of the website.

Exit condition: Producer/Company will click the Sign Up button on the Sign Up

Page.

Flow of Events:

1. After clicking the Sign Up button on the main page, a popup will appear which

the user must choose either of the options producer or company.

2. After selecting, the sign up page will appear.

3. Producer/Company will fill in the blanks and press the Sign Up button.

4. Producer/Company signs up successfully.

Use Case #2

Unique Name: Login

Participating actor/s: Producer/Company

Entry condition: Producer/Company will login to the system by clicking “Login”

button on the main page of the website.

Exit condition: Producer/Company will click the Login button on the Login Page.

Flow of Events:

1. After clicking the Login button on the main page, the system will redirect the

user to the Login page.

2. Producer/Company will enter their email address and their password, and

press the Login button.

3. Producer/Company logs in successfully.

Use Case #3

Unique Name: Change Password

Participating actor/s: Producer/Company

Entry condition: Producer/Company clicks “Change Password” button on their

profile page.

Exit condition: Producer/Company presses the “Confirm” button to confirm the new

password.

Flow of Events:

1. Producer/Company opens their profile page by clicking their icon on their

main page.

2. Producer/Company clicks “Change Password” button.

3. Producer/Company enters their old password and the new password, and

presses “Confirm” button.

4. Producer and the company changes password successfully.

Use Case #4

Unique Name:Purchase Product

Participating actor/s: Company

Entry condition: Company will click the “Purchase” button next to the product.

Exit condition: Company will click “Confirm” button on the popup.

Flow of Events:

1. After company click the “Purchase” button, a popup will appear with the

details of the product.

2. Company will press “Confirm” button.

3. Company purchases the product successfully.

Use Case #5

Unique Name:View Products On Sale

Participating actor/s: Company

Entry condition: Use Case #2 - Login

Flow of Events:

1. After logging in, the company can see the products on sale on their main

page.

Use Case #6

Unique Name:Add Product

Participating actor/s: Producer

Entry condition: Producer will click the “Add Product” button on their main page.

Exit condition: Producer will click the “Add Product” button on the Add Product

page.

Flow of Events:

1. After the producer clicks the “Add Product” button, the Add Product page will

appear.

2. Producer will fill in the blanks.

3. Producer will click the “Add Product” button.

4. The product is successfully added.

Use Case #7

Unique Name: View Profile

Participating actor/s: Producer/Company

Entry-Exit condition: Producer/Company will click their icon on their main page.

Flow of Events:

1. After Producer/Company clicks their icon, the profile page will appear.

Use Case #8

Unique Name: View Previous Transactions

Participating actor/s: Producer/Company

Entry condition: Use Case #7 - View Profile

Flow of Events:

1. After Producer/Company goes to their profile page, they can see their

previous transactions.

Use Case #9

Unique Name: Form Virtual Cooperative

Participating actor/s: Producer

Entry condition: Producer clicks “Form Virtual Cooperative” next to their products

on their main page.

Flow of Events:

1. After the producer clicks “Form Virtual Cooperative” button, the system will

find a suitable Virtual Cooperative for the producer.

3.5.2 Use-Case Model

3.5.3 Object and Class Model

3.5.3.1 Class Diagram

3.5.3.1.1 Class: Actor

Actor class is a mining new blocks for our blockchain platform. It has some private key to be
processed and name, some database properties and most importantly commodity and
assets information inside. This commodity is a base for transactions and this negotiation will
be recorded into our secure blockchain platform.

➔ Parameters:
◆ key: An integer based private keys to traverse into blockchain blocks.
◆ name: A string which holds the name of the actor.
◆ email: A string which holds the email of the actor.
◆ password: A string which holds the password of the actor.
◆ commodity: A product based object to hold property inside value, harvest, or

non.
◆ assets: A string based made cryptocurrency of actor’s stakes.

➔ Operations:
◆ getKey(): Returns the key of the actor.
◆ getName(): Returns the name of the actor.
◆ setName(String newName): Changes the name of the actor with the given

newName.
◆ getEmail(): Returns the email of the actor.
◆ setEmail(String newEmail): It sets new assigned email to string.
◆ getPassword(): Returns string based password.
◆ setPassword(newPassword): It sets password with a new string value.

3.5.3.1.2 Class: Producer

This class extends Actor class. Producer class is responsible for product based operations, it
means adding products, selling products and taking Product object are operated by that
class. Producer information and product object itself are handled in that class.

➔ Parameters:
◆ products[]: An array based product objects to hold products inside.

➔ Operations:
◆ getProducts(): A method for taking products.
◆ addProduct(newProduct): A method takes new products as parameter used

for adding new product amount.

3.5.3.1.3 Class: Company

This class extends one Actor. It is a type of an actor and it is a part of transactions with
cooperatives or directly with farmers. Takes products and gives money commodities
exchanged with money and product assignments. Its transactions holds on blockchain
records.

3.5.3.1.4 Class: Cooperative

It extends Actor class, it is a type of it. Cooperatives takes farmers products to pass the
distinct quotas of companies. Its transactions done between farmers and company there is
two type of transactions occured with cooperatives. Cooperatives with company and
cooperatives with farmers. Cooperatives has interests as commodity at the beginning and
after the transactions with farmers interest becomes farmers property and products becomes
cooperatives property. Second transaction between company is done by taking products of
cooperatives and giving them money, commodities are exchanged among them with product
and money variables.

➔ Parameters:
◆ name: String based name property.
◆ key: String based private key property.
◆ members[Producer]: Producer based array holds members.
◆ interests[int]: Interest based integer array holds interests inside.
◆ amount[double]: Amount based double array holds amounts inside.

3.5.3.1.5 Class: Product

Objects of this class represents the real life products produced by producers.

➔ Parameters:
◆ id: Integer based unique id property
◆ name: String based name property
◆ type: String based type property
◆ description: String based description explaining the product
◆ value: Double based value property
◆ amount: Double based amount property

➔ Operations:
◆ getName(): A method for taking the name of the product
◆ getType(): A method for taking the type of the product
◆ setType(String newType): A method for setting the type of the product
◆ getDescription(): A method for taking the description of the product
◆ setDescription(String newDescription): A method for setting the

description of the product
◆ toString(): A method for printing the product
◆ getValue(): A method for taking the value of the product
◆ setValue(double newValue):A method for setting the value of the product
◆ getAmount(): A method for taking the amount of the product
◆ setAmount(double newAmount):A method for setting the amount of the

product

3.5.3.1.6 Class: Asset

The objects of this class represents a Product with an owner.

➔ Parameters:
◆ owner: Actor based object showing the owner of the asset

➔ Operations:
◆ getOwner():A method for taking the owner of the asset
◆ setOwner(Actor newOwner):A method for taking the owner of the asset

3.5.3.1.7 Class: Transaction

Objects of this class represent results of exchanges between producers and the companies.

➔ Parameters:
◆ id: Integer based unique id property
◆ newValue: Double based updated value of the transaction
◆ sender: Actor based sender property
◆ recipient: Actor based recipient property
◆ asset: Asset based property

➔ Operations:
◆ getId(): A method for taking the id of the transaction
◆ getValue(): A method for taking the value of the transaction
◆ getSender(): A method for taking the sender of the transaction
◆ getRecipient(): A method for taking the recipient of the transaction

3.5.3.1.8 Class: TransactionPool

This class stores all transactions.

➔ Parameters:
◆ transactions[Transaction]: Transaction based array property holding the

transactions
➔ Operations:

◆ updateTransaction(Transaction transaction): A method for updating the
transaction in the pool

◆ addTransaction(Transaction transaction): A method for adding a
transaction to the pool

◆ getTransactions(): A method for taking a transaction in the pool
◆ clear(): A method for removing all the transactions in the pool
◆ transactionExists(Transaction transaction): A method for controlling if a

transaction exists in the pool

3.5.3.1.9 Class: Block

Objects of this class stores the Transactions.

➔ Parameters:
◆ timestamp: Double based time property showing the time of the creation of

the block
◆ nextHash: Integer based property to make a connection with the next block

◆ hash: Integer based property to encrypt the block
◆ data: A property that holding all the information about the block

➔ Operations:
◆ toString(): A method to write the block

3.5.3.1.10 Class: Blockchain

This class stores the Blocks.

➔ Parameters:
◆ timestamp: Double based time property showing the time of the creation of

blockchain
◆ previousHash: Integer based property to make a connection with the

previous block
◆ hash: Integer based property to encrypt the blockchain
◆ data: A property that holding all the information about the objecy

➔ Operations:
◆ toString(): A method to write the blockchain

3.5.3.1.11 Class: P2pServer

This class represents a dummy server living in the connection established between the
pairs.

➔ Parameters:
◆ blockchain: A blockchain based property
◆ transactionPool: A trancationPool based object holding all the transactions
◆ sockets[]: A socket based array property

➔ Operations:
◆ listen(): A method to listen a socket
◆ connectToPeers(): A method to connect to server
◆ connectSocket(): A method to connect to socket
◆ messageHandler(Socket socket): A method to handling the message

coming from Socket
◆ sendChain(Socket socket): A method to send the chain to the appropriate

socket
◆ sendTransacion(Transaction transaction): A method to send the

transaction
◆ brodcastClearTransactions(): A method to send the clear the transactions

3.5.3.2 Object Model

3.5.4 Dynamic Models

3.5.4.1 Activity Diagrams

3.5.4.2 State Diagrams

3.5.4.2.1 Change Password

3.5.4.2.2 Add Product

3.5.4.3 Sequence Diagrams

3.5.4.3.1 Buy Product

3.5.5 User Interface - Navigational Paths and Screen Mock-ups

3.5.5.1 Home Page

This will be the home page of So FarM So Good. This page will be where the people will get
to know our platform and be able to sign up.

After clicking Sign Up button, a pop-up will appear which the user can select two options two
sign up: Producer Sign Up or Company Sign Up.

3.5.5.2 Sign Up Page

After filling in the blanks, the user will press the Sign Up button and be signed to the
platform. This page will be similar for both company user and producer user. There will be
design differences such as background-picture and color theme.

3.5.5.3 Login Page

After filling in the blanks, the user will press the Login button and login to the platform. If the
user does not remember their password, they can press Forgot my password text and

change their password. This page will be similar for both company user and producer user
just like the Sign Up page.

3.5.5.4 Producer Main Page

The producer can see their products which they’ve put on sale on their Main Page. They can
search for specific products and Form Virtual Cooperatives for each product. If they want to
add a new product, they must press the Add Product button, and the platform will redirect
them to Add Product Page. They can also view their profile by pressing their icon on the top
right of the page.

3.5.5.5 Add Product Page

After filling in the blanks and pressing the Add Product button, the new product will be added
and can be seen in the producer’s main page.

3.5.5.6 Company Main Page

The company can see products which are on sale on their Main Page. They can search for
specific products and purchase them by pressing Purchase button next to each product.
They can also view their profile by pressing their icon on the top right of the page.

3.5.5.7 Profile Page

In the profile page, the name, email and the list of previous transactions of the
producer/company can be seen. If the user wants to change their password, they must press
Change Password button. After that, an email will be sent to their email address which they
can then change their passwords.This page will be similar for both company user and
producer user. There will be design differences such as background-picture and color
theme.

4 Other Analysis Elements

Our senior design project is separated to the two parts. First part is design
stage which is decision of implementation techniques and reporting of analysis, high
level stages. Second part is implementation of the project as a real working program.
Design stage is also separated into 3 three sections in itself. Design stage will be
composed of specification, analysis and high level sections. In the specification
section, we have already scope and the basic features of the project. Moreover, at
the analysis section we will visualize the SoFarmSoGood with using mock ups and
diagrams. At the high level design section, we will very close to the implement the
project. In this section, the project will be reported with user interfaces and core logic
diagrams.

In the implementation part, we need to specify cooperative type because
many different cooperatives exist according to the working principle. After that, we

should decide on the payment systems according to the peer to peer styles on the
Blockchain technology. Our tool will be HyperLedger as composer of the project.
This tool is open source and provide us smart contracts and assistive other
technologies.

4.1 Consideration of Various Factors

4.1.1 Security

We will consider safety issue by using Blockchain technology. This technology is innately
secure because it utilizes powerful cryptography. Each transaction is signed with the private
key and then can be further verified with a public key. If transaction data changes, the
signature becomes invalid. As a result, the block is ignored and won’t make it to the chain.

4.1.2 Welfare

Our main aim is to support native farmers by establishing cooperatives. Since farming is one
of the locomotives of the Turkey’s economy, welfare is directly related to the farming and
farmers. In our project, sugar beet farmers will come together and resolving quota problem.
After solving quota problem, farmers are not going to sell their products to crop chandlers.
These crop chandlers purchase the crops much more cheaper than the government or other
sugar beet cooperatives.

4.1.3 Social Factors

SoFarmSoGood will help to the farmers to control and manage crop distribution. Our
software will also help the farmers to sell sugar beets even if the amount of the crop is less.
Moreover, farmers will hold the data by the Blockchain and make contributions to the
economy of the country.

4.2 Risks and Alternatives

First of all, entire group members will learn Blockchain technology. Since this
technology is very new to us, we will start from the zero. Learning is a process which

may have different responses on the every single person. Realizing and
comprehensive understanding will take significant amount of time to implement the
project. Because of that , we may encounter a risky situation that may prevents us
completing the project before the deadline. In terms of the syllabus we have 2
semesters to implement the project. That is why, we should start the coding section
of the project at the very beginning of the second semester. Moreover, the
motivations and responsibilities of the each member will be determinant factor for
risks. At the beginning of the each stage of the project, the workload is being
allocated along team members fairly. In order to succeed the project, each member
is responsible of doing his/her work within the specified time interval. Namely, any
group member has a potential risk in terms of the probability of escaping allocated
works. On the other hand, any team member has a potential of quitting the project
completely during the design or implementation stage.

Moreover, the project may be implemented in many different ways. Those
implementation and design styles will construct alternatives of the project. Firstly, we
can generate various models of the cooperatives. According to the our researches,
cooperatives over the world differs as working principle. For instance, some
cooperatives get together and become associations in order to export their crops.
Moreover, some have own agricultural markets which provides elements to the
member farmers. Implementation of the Blockchain is also open to different
combinations. The project may evolve in such cases. For instance, direction of the
transactions will be remarkable point which. Farmers may take shares from the
cooperative when they sell their product. Namely, those shares can be stored on the
Blockchain system.

4.3 Project Plan

Our project plan is managed in terms of Agile Methodology Application Lifecycle
Management we create our base nature into its Software Development LifeCycle phases.
We decided to create our project in Agile Methodology related with our senior design project
page analysis report clarification. To exemplify that choice reason, having iterative process
requirement is emphasized for project’s implementation phase, also they emphasized while
doing design and implementation phase there could be a need for going back and edit the
past phases again could be possible. These needs required us to use contemporary, less
documentation but more focus on product itself methodology as Agile, so we choose Agile
Scrum Process Model for our senior design project creation. We need to split project into
three main operations to conduct our project in terms of Agile Application Lifecycle
Management. To highlight these operations it could be written as Agile ALM bases are
Governance, Development and Operations. [1] For the Governance phase we need to
advance our idea to make it manageable and for the Development phase we need to
develop our idea into some related platforms as implementation step. Last phase is
Operations phase and this one only required to have released product, it means this step is

some operations after release of our work into market. However, we only have process of
development of a product, there will no experience for after releasing it to the market. That is
why, we will not need Operations phase in our project’s development. We added other two
phase of Agile Application Lifecycle Management at the beginning of our Work Breakdown
Structure it can be seen below integrated with Gantt Chart.

For having Agile Methodology we need to take several sprints to meet the demand of
work splitting and taking actions for demands and requirements. As a process model of Agile
Methodology we took Scrum into consideration for our project. Scrum recently is the trendy
Process Model for Agile Methodology in comparing between Kandban, XP programming and
so on. We planned to have iterative five sprints for Scrum’s short iterative sprints as Sprint 1,
Sprint 2, Sprint 3, Sprint 4 and Sprint 5 can be seen into our Gantt Chart below. Before
splitting it into sprints we needed to think about our work packages which could be thought
as smallest manageable unit of project elements. We numbered our work packages into our
Work Breakdown Structure and we integrated them into Agile Scrum SDLC. For these
manageable work packages, we have six of them, plan, analysis, design, implementation,
test and integration. Related with sprints elements and requirements we edited these SDLC
work packages illustrated into chart below. Then we assigned ourselves as human
resources for work packages and did our work splits. For explanation of this human
resources assignment titles and work splitted information can be seen on the WP table
below provided by report template. In Agile Methodology Scrum Process Model we need to
assign our human resources into needs, it means there is no obvious borders work splitting
for project development. For clarification for that way, there is no goal keeper and strikers for
our Scrum model into the field most of works can be changed into needs and everyone
needs to be capable for doing every related phases of work to be agile in development.

Table 01: Factors that can affect analysis and design.

 Effect level Effect

Public health 0/10 Our project is not related with the
public health.

Public safety 10/10 Blockchain Technology is
responsible for the ensuring the data
safety.

Public welfare 9/10 By the online cooperatives sugar
beet farmers will increase the profit.

Global factors 0/10 As we are not aiming to the export
the sugar beet, we do not need to
the global factors.

Cultural factors 0/10 No correlation with the cultural
factors.

Social factors 10/10 Main aim is to support the
farmers.Because of that, social
factors has a significant place in the
project.

Table 02: Risks

 Likelihood Effect on the project B Plan Summary

Having a
trouble with
learning
Blockchain

 Unlikely It totally leads changes all
process of our project. Our
system needs to be in
exactly different path.

 Having an proper, regular
DB relation between
harvest rates of producers
as sellers and selling
products and companies
as buyers relations. e.g.
using SQL server

Network
problems
occurences
by Docker

 Rare It leads to having exactly
different network solutions.
We need to have another
programs for usable network
between blockchain actors
and relations.

 Having another network
solutions between
blockchain relations. e.g.
using VirtualBox

Changing
requirement
related with
having coin
in system

 Possible It requires total system
extension in logic, we need
to re-design and
re-implement some changes
and Angular is not well
supported with some bigger
coin kinds

 Having an more
coin-based front-end side
extension for our JS
frameworks such as Vue
or very well supported with
Eterium coins, ReactJS,etc

Table 03: List of work packages

WP# Work package title Leader Members involved

WP1 Plan Giray Baha Kezer

 Kaan Atakan Öztürk,
Fazilet Simge Er,
Melih Ünsal

WP2 Design Fazilet Simge Er Giray Baha Kezer,
Kaan Atakan Öztürk

WP3 Implementation Melih Ünsal Giray Baha Kezer,
Kaan Atakan Öztürk,

Fazilet Simge Er

WP4
Test Kaan Atakan Öztürk Fazilet Simge Er,

Giray Baha Kezer

WP 1: Plani i=1,2,3,4,5

Start date: for Plan Sprint1 End date:

ALM Plan:

10.14.19 10.14.19

Sprint Plan:

10.15.19 10.15.19

 for Plan Sprint2

11.25.19 11.25.19

 for Plan Sprint3

1.9.20 1.9.20

 for Plan Sprint4

Start date: End date:

2.25.20 2.25.20

 for Plan Sprint5

4.10.20 4.20.20

Leader: Giray Baha Kezer Members involved: Kaan Atakan Öztürk

Fazilet Simge Er

Melih Ünsal

Objectives: Plan work packages consists 5 Sprint every Sprint has its own planning
phase. Related with Agile SDLC common and iterative one phase is planning. In Sprint 1
we need to decide ALM relevance planning and also first Sprint planning. In addition
Project Specification plan is needed to be done that phase. In Sprint 2 we need to plan
our Sprint 2 and next step chain.Also we needed to plan our Analysis report in that phase.
In Sprint 3 we need to plan our High Level Design report and particular that Sprint in
that phase. In Sprint 4 we need to plan our current Sprint in that step. In Sprint 5 we need
to plan our current Sprint and also Low Level Design report in that phase. Also in all
particular Sprint Planning work packages we need to decide backlogs for other steps.

Tasks:

Task 1.1 <Sprint 1 Plan Task>: This task includes determining the milestones and
“Definition of Done” in particular that sprint. Also Sprint backlogs need to be planned in
that phase for next steps of Sprint and next strategy for assigned splitted works.

Task 1.2 <Sprint 2 Plan Task>: This task includes determining the milestones and
“Definition of Done” in particular that sprint. Also Sprint backlogs need to be planned in
that phase for next steps of Sprint and next strategy for assigned splitted works.

Task 1.3 <Sprint 3 Plan Task>: This task includes determining the milestones and
“Definition of Done” in particular that sprint. Also Sprint backlogs need to be planned in
that phase for next steps of Sprint and next strategy for assigned splitted works.

Task 1.3 <Sprint 4 Plan Task>: This task includes determining the milestones and
“Definition of Done” in particular that sprint. Also Sprint backlogs need to be planned in
that phase for next steps of Sprint and next strategy for assigned splitted works.

Task 1.5 <Sprint 5 Plan Task>: This task includes determining the milestones and
“Definition of Done” in particular that sprint. Also Sprint backlogs need to be planned in
that phase for next steps of Sprint and next strategy for assigned splitted works.

Deliverables

D1.1: Project Specifications Planning

D1.2: Analysis Report Planning

D1.3: High Level Design Planning

D1.4: Low Level Design Planning

WP 2: Designi i=1,2,3,4,5

Start date: for Design Sprint1 End date:

10.25.19 11.11.19

 for Design Sprint2

11.26.19 12.23.19

 for Design Sprint3

1.15.20 2.17.20

 for Design Sprint4

3.4.20 3.10.20

 for Design Sprint5

4.14.20 4.20.20

Leader: Fazilet Simge Er Members involved: Giray Baha Kezer, Kaan
Atakan Öztürk

Objectives: Design work packages consists of 5 Sprint phases and every Sprints have
their own design phases. Related with Agile SDLC common and iterative one phase is
design. In Sprint 1 we need to more focus on designing phase in terms of architectural

and technical steps of our project. More commonly technical questions could be part of
that phase in particular Sprint1. In Sprint 2 we need to have more rare questions for
technical and architectural side for our project. In that phase design part should be more
specific than the first one. In Sprint 3 we need more advanced design part for our ongoing
work according to technical and architectural side. For our UI parts needed to be
advanced than just having mockups in that phase. In Sprint 4 Rare and related questions
needed to be that phase. We need to more focus on designing phase in that particular
Sprint 4. We need real time testable designing phases in that Sprints more accordingly.
These iterative steps cover the previous parts and feeded by them that is why we need
more advanced in same side with every next Sprints. In Sprint 5 we need to decide last UI
form of our project in that phase. Related with its being last Sprint we need to have
solutions of all related architectural and technical questions also UI parts that we want to
create.

Tasks:

Task 1.1 <Sprint 1 Design Task>: This task includes determining architectural phases of
particular sprints between project stakeholders. All related technical questions need to be
part of Sprint Design part.

Task 1.2 <Sprint 2 Design Task>: This task includes determining architectural phases of
particular sprints between project stakeholders. All related technical questions need to be
part of Sprint Design part. In Sprint 2 we have some ongoing process in that sprint and
we need to integrate more complex architectural and technical questions than past Sprint
iteratively.

Task 1.3 <Sprint 3 Design Task>: This task includes determining architectural phases of
particular sprints between project stakeholders. All related technical questions need to be
part of Sprint Design part. In Sprint 3 we have some ongoing process in that sprint and
we need to integrate more complex architectural and technical questions than past Sprint
iteratively.

Task 1.4 <Sprint 4 Design Task>: This task includes determining architectural phases of
particular sprints between project stakeholders. All related technical questions need to be
part of Sprint Design part. In Sprint 4 we have some ongoing process in that sprint and
we need to integrate more complex architectural and technical questions than past Sprint
iteratively.

Task 1.5 <Sprint 5 Design Task>: This task includes determining architectural phases of
particular sprints between project stakeholders. All related technical questions need to be
part of Sprint Design part. In Sprint 5 we have some nearly done process in that sprint
and we need to focus on other phases more than designing phase in that particular Sprint.
Because we need to release the product and we are in the last Sprint.

D1.1: Project Specifications Designing

D1.2: Analysis Report Designing

D1.3: High Level Design Designing

D1.4: Low Level Design Designing

WP 3: Implementationi i=1,2,3,4,5

Start date: for Implementation Sprint1 End date:

11.13.19 11.23.19

 for Implementation Sprint2

1.1.20 1.8.20

 for Implementation Sprint3

1.15.20 2.24.20

 for Implementation Sprint4

2.26.20 4.9.20

 for Implementation Sprint5

4.14.20 5.4.20

Leader: Melih Ünsal Members involved: Giray Baha Kezer, Kaan
Atakan Öztürk,

Fazilet Simge Er

Objectives: In Sprint 1 we have nearly non implementation phase because we do not
have enough research on that time and there is not much thing to implemented in a new
technology such as Blockchain. In Sprint 2 related with some research and an accurate
analysis of project we could start some implementation and its duration much higher than

the beginning of first iteration can be seen in Gannt Chart. In Sprint 3 we need to have
more focus on implementation related with project natural process between ongoing new
sprints. In Sprint 4 we need nearly do all of the implementation part and focus only
impelementation in terms of projects specification requirements in the last phase. Related
feedbacks of client or supervisors will be guiding for the last sprint for releasing the
product.

Tasks:

Task 1.1 <Sprint 1 Implementation>: Purpose of having that task in this kind of early
stage is possible to have some related research for prototyping of new technology such as
Blockchain, Docker and so on.

Task 1.2 <Sprint 2 Implementation>: Purpose of having that implementation phase is
related more advanced research and analysis requires more concrete coding and
prototyping in that new technology.

Task 1.3 <Sprint 3 Implementation>: Purpose of having that implementation phase is
related more advanced research and analysis requires more concrete coding and
prototyping in that new technology. Feeded past sprints could require more
implementation phase in that sprint we need to be more accurate in coding and
implementation in that time. Also related research could be required more
implementation into Angular or other types of UI prototyping.

Task 1.4 <Sprint 4 Implementation>: Purpose of having that implementation phase is
related more advanced research and analysis requires more concrete coding and
prototyping in that new technology. Feeded past sprints could require more
implementation phase in that sprint we need to be more accurate in coding and
implementation in that time. Also related research could be required more
implementation into Angular or other types of UI prototyping. We need to have nearly
finished in implementation because we only have one sprint and last sprint requires more
preparation for releasing the product and last testing phases and so on.

Task 1.5 <Sprint 5 Implementation>: Purpose of having that implementation phase is
related having only one sprint at that time requires more focused implementation
according to your last research and last decisions. It also requires feedbacks based
requirements’ coding in pure concentration and it is critical for releasing the product into
market.

Deliverables

D1.1: Project Specifications Implementation

D1.2: Analysis Report Implementation

D1.3: High Level Design Implementation

D1.4: Low Level Design Implementation

WP 4: Testi i=1,2,3,4,5

Start date: for Test Sprint1 End date:

10.16.19 11.14.19

 for Test Sprint2

11.26.19 1.8.20

 for Test Sprint3

1.10.20 2.24.20

 for Test Sprint4

2.26.20 4.9.20

 for Test Sprint5

4.14.20 5.11.20

Leader: Kaan Atakan Öztürk Members involved:
Fazilet Simge Er,
Giray Baha Kezer

Objectives: Testing is started after plan phase and generally it continues until the end of
sprint. In Sprint 1 we have a different case, related with not having adequate research
and works testing has some delay to start inside sprint. There is more focus on other
phases at that sprint. Except for Sprint 1 we all have same testing manner, testing is
started after planning is done and it is spreaded nearly until the end of sprint. Only in

Sprint 3 we have exactly finish to finish relation between testing and Sprint 3 itself.
Testing starts after planning and continues at the end of particular sprint. Related with
having critical changes into implementation we become more needed to testing phases
into debugging for coding. Related with coding pattern of project testing becomes more
critical.

Tasks:

Task 1.1 <Sprint 1 Testing>: Purpose of that phase in Sprint 1 is possibility to have some
coding advancements and some possible unit testing cases. Also we need some
verification and validation research on that particular sprint. However, having testing
need is less than other sprints.

Task 1.1 <Sprint 2 Testing>: Purpose of that phase in Sprint 2 is possibility to have
some more coding advancements and some possible unit testing cases. It could be
possible to have some functions and class enhancements related test cases and test
process will be needed. Having testing phases need is more than past iterative sprint. It
starts with planning ending and continues to nearly end of sprint.

Task 1.1 <Sprint 3 Testing>: Purpose of that phase in Sprint 3 is possibility to have
more coding advancements. Related with its process but we could need some integration
testing, unit testing, some interface testing, and so on. It could be possible to have some
functions and class enhancements related test cases and test process will be needed.
Having testing phases need is more than past iterative sprint. It has exact the finish to
finish relation between sprint 3 itself. It starts with planning ending and continues until
the end of that sprint.

Task 1.1 <Sprint 4 Testing>: Purpose of that phase in Sprint 4 is possibility to have more
coding advancements. Related with its process but we could need some integration
testing, unit testing, some interface testing, and so on. It could be possible to have some
functions and class enhancements related test cases and test process will be needed. In
that scope we need more and more testing because of Scrum’s synchronously testing and
coding relation. It starts after planning phase and continues nearly to the end of sprint.

Task 1.1 <Sprint 5 Testing>: Purpose of that phase in Sprint 4 is possibility to have
more coding advancements. Related with its process but we could need some integration
testing, unit testing, some interface testing, and so on. It could be possible to have some
functions and class enhancements related test cases and test process will be needed.
Related with lack of time we have shorter last sprint in our project management lifecycle.
Thereby, we have more focus on testing for releasing our final product and lack of time in
comparison between other sprints.

Deliverables

D1.1: Project Specifications Testing

D1.2: Analysis Report Testing

D1.3: High Level Design Testing

D1.4: Low Level Design Testing

4.3.1 Project Management Tools

We prefer Github platform as our project management tool; there is several reasons; github is
offering us not only developing our work coordinately online but also it makes our work trackable,
easily updatable it means working transparently and on schedule at the same time.[2] We could
organize our project and make them splitted into manageable work packages and so arrange the
related milestones and after that whole process we could assign them among us easily at the same
platform. Tasks could be easily inserted and issues can be easily worked on, labelling could be easily
done and also mentions could be easily inserted into working elements while developing coordinately,
that is why we choose Github to be able to work faster, we need speed for having Agile Methodology,
Scrum Process Model development. At that lines the most important thing is product itself and it
requires more speed. We took JIRA as our second helpful choice for project management tool.
Related with having Agile Methodology JIRA is one of the best known and usable project
management tool in software world.[3] JIRA is integrated with Agile principles and easily usable with
sprint permissions, determining issue types, creating related workflows and easily editing custom
dashboards.[4] JIRA is also supporting many Scrum charts, figures as Burndown, Sprint report,
cumulative flow diagrams and control charts. This support offers us a chance to create and work easily
with our project developing side and management side simultaneously. We decided to use Github and
JIRA simultaneously in terms of needs, for splitting our projects into work packages as manageable
smallest units and created project in its site, so we could send an invitation to our supervisor to check
our works. Also JIRA will be used for working with Scrum features as charts and administrating
Scrum features while developing the project. In addition to our selected tools, we investigated other
ones named ProWorkFlow. Even if it has similar features with JIRA we do not satisfied with its
pricing attitudes and we searched for free management tools.

Figure [1]: Gantt Chart Visualization of So Farm So Good project

4.4 Ensuring Proper Team-Work
In the early projects, there has been imbalance between the requirements because

there were no such a project management plan. In this project, we are going to seperate the
project into several packages then for every package there is going to be a package
manager that is responsible for this part of the project. Since we have Scrum Process Model,
we are going to see who have completed his/her assignment so that we are able to give
feedback to any member of the group. Thus, these will increase our performance and also
ensure the proper team-work.

4.5 Ethics and Professional Responsibilities
Nowadays, one of the most important problem in the modern world is security and

privacy of personal data. Most people are concerning what is this app going to do with our
data. In this project, all the transactions and user data will be hold by blockchain technology
which is a populer decentralized data technology. By this technology, user data will be
secure and cannot be decrypted by any other person since the system automatically
updates itself by the speed that no computer can achieve. The user data are not also shared
by any other person or company no matter how much money they offer.

4.6 New Knowledge and Learning Strategies

As a new trendy technology we need to learn blockchain. What is this network

between ledgers, how its transactions are processed via chains. What is peer cards
and what these cards hold as commodities and assets. What is the relation between
them? What are the ledgers that form blockchain, what are the ledger types and
what type of connection do they have such as distributed and centralized
connection? What is blockchain node, what is the importance of the first node and
what does it contain? How do nodes make a connection with each other? What is
private key for a node and how do the relations between nodes encrypted? How to
make a transaction and how does blockchain hold these transactions? What are the
actors and what are the relationships between actors? What is docker and why to
need it for network? What is Hyperledger, how to use it for blockchain? What is
composer and composer generated file? Is there any ethical or juristical concern
behind making the payments on the application rather than only holding the
transaction data by blockchain? We are going to answer these questions throughout
the semester by internet research and interviewing the experienced people around
us.

5 Glossary

ALM Application Lifecycle
Management
specification,design,develop
ment and testing of a
software application.

17,20

WP Work package is the
smallest manageable unit.

17,20,21,23

XP Extreme programming is a
agile software development
framework that aims to
produce higher quality
software.

17

HyperLedger Hyperledger is an open
source collaborative effort
created to advance
cross-industry blockchain
technologies.

15

SDLC Software Development Life
Cycle (SDLC) is a process
used by the software
industry to design,develop
and test high quality
softwares.

17,20

Glossary for any domain-specific terms you use in your report.

6 References
Object-Oriented Software Engineering, Using UML, Patterns, and Java, 2nd Edition, by
Bernd Bruegge and Allen H. Dutoit, Prentice-Hall, 2004, ISBN: 0-13-047110-0.

[1] D. Chappell, “What is Application Lifecycle Management?,” What is Application
Lifecycle Management?, 2014.

[2] “GitHub features: Integrated project management tools,” GitHub. [Online]. Available:
https://github.com/features/project-management/. [Accessed: 11-Nov-2019].

[3] J. M. D. Santos, “Top 10 Best Project Management Software & Tools in 2019,” Project,
08-Nov-2019. [Online]. Available:
https://project-management.com/top-10-project-management-software/. [Accessed:
11-Nov-2019].

[4] Atlassian, “Agile tools for software teams - Jira Software,” Atlassian. [Online]. Available:
https://www.atlassian.com/software/jira/agile. [Accessed: 11-Nov-2019].

